The project aims to develop an innovative multidisciplinary and multi-scale approach in the field of mineral recovery by flotation.

Project background and objectives

In France, in Europe, and in the rest of the world, conducting the energy transition toward decarbonized and renewable energies induces a growing need for critical metals, particularly lithium, tungsten, cobalt, nickel, mainly extracted from ores and mining residues. The processes commonly used in ore processing lack efficiency to recover minerals and precious metals from the subsoil while respecting the environment. It is therefore essential to improve the efficiency of these techniques in order to sustainably extract critical metals from primary sources, ores, and secondary sources, such as mining residues, in line with the issues of ecological transition.

Flotation is a highly efficient and widely used process to separate minerals of interest from their gangue (non-valuable minerals). This method is based on the use of reagents aimed at modifying the surface tension of minerals and then on the injection of air bubbles that recover the particles rendered hydrophobic. However, flotation is still not optimal, leading to a longer and more costly process, due to the difficulty in understanding and simulating:

  • the physico-chemical phenomena of adsorption, at solid/liquid and liquid/gas interfaces;
  • their link with particle transport and the recovery of valuable minerals in turbulent flows.

Indeed, this method involves heterogeneous materials, a complex water chemical composition, particles, bubbles, and reagents interacting in complex flows, particularly for fine materials which are attracting growing interest. Currently, only atomic simulations and fluid dynamics simulations at the considerably larger reactor scale are taken into account, without mechanistic understanding of the phenomena at play. The efficiency of flotation can be significantly improved by improving its simulation and ultimately mineral recovery (and therefore metals). This by taking into account multi-physical and multi-scale phenomena, from the atomic scale to the reactor scale, and by understanding and mechanistically simulating the interaction forces between particles and their environment during their transport.

Example of the results of a flotation experiment conducted at BRGM's Plat'Inn platform in Orléans on mineral raw materials and the circular economy (Loiret, 2023).

Example of the results of a flotation experiment conducted at BRGM's Plat'Inn platform in Orléans on mineral raw materials and the circular economy (Loiret, 2023).

© BRGM - Didier Depoorter

Expected outcomes

The MINFLOT project proposes a new and innovative multidisciplinary and multi-scale approach closely combining cutting-edge experiments and numerical modeling from the atomic scale, where key physico-chemical phenomena at interfaces occur, to the reactor scale, through the particle and microreactor scale.

  • Molecular dynamics simulations coupled with artificial intelligence will provide input data to calculate colloidal interaction forces involved in fluid dynamics simulation with the discrete element method to reproduce the flow and reactivity of particles in microreactors. These simulations will be validated by microfluidic and microreactor experiments. Electrokinetic, wettability, and geochemical measurements and models linking atomic and hydrodynamic simulations will also be undertaken.
  • Then, the flow and reactive transport at the larger reactor scale will be modeled taking into account the results of smaller-scale simulations and measurements of mineral and metal recovery from innovative flotation experiments. The expected advances will considerably improve the reliability of flotation simulations as well as the efficiency and cost of the process. This will make it possible to process larger quantities of ores and mining waste in order to recover the metals essential to the ecological transition, such as tungsten and lithium.

Project organization

Organisation du projet

Project leader

Philippe Leroy

Philippe Leroy

Philippe Leroy est ingénieur de recherche en géophysique à la Direction de la Connaissance et Géomodélisation du Sous-sol du Bureau de recherches géologiques et minières (BRGM), à Orléans, concentrant ses travaux sur les géosciences environnementales pour atténuer la pollution anthropique incluant les déchets radioactifs et la séquestration du CO2, et les risques, ainsi que l'exploration des ressources en eau et minérales. Il est un expert internationalement reconnu en géophysique de subsurface/hydrogéophysique incluant la géophysique à l'échelle des pores et la physico-chimie. Il a publié de manière extensive, incluant 43 articles dans des revues internationales d'hydrogéophysique, de géochimie, et de science des colloïdes et des interfaces (indice h 27, environ 4000 citations dans Google Scholar). Il est actuellement le porteur d'un projet de l'Agence nationale de la recherche française sur l'utilisation de l'imagerie électrique pour améliorer la bioremédiation des hydrocarbures et responsable pour le BRGM d'un projet de l'Agence nationale de la recherche française et allemande sur l'utilisation de l'imagerie électrique pour surveiller les propriétés de confinement des matériaux argileux sur les énergies géothermique et hydrogène stockées. Il est également le porteur d'un nouveau projet PEPR Sous-sol sur le développement de simulations multi-échelles et multiphysiques de l'échelle moléculaire à l'échelle du réacteur pour améliorer les techniques de flottation minérale et la récupération de métaux critiques comme le lithium et le tungstène à partir de minerais européens et de déchets miniers. Il a également effectué 34 communications dans des congrès et ateliers internationaux, et 14 séminaires. Philippe Leroy a été éditeur invité en hydrogéophysique de la revue Geophysics et co-organisateur de la session de l'Union européenne des géosciences sur l'utilisation de l'hydrogéophysique pour améliorer l'hydrologie, l'agronomie et les pratiques agricoles. Il a co-encadré 6 doctorats (et 2 en cours) et 4 post-doctorats (et 1 en cours).

Partners

Logo du BRGM en couleurs
Université de Lorraine
CNRS